Articles & Publications

Reagan National Defense Forum in Review

AUTHOR(S): Tony Tether

PUBLISHED: December 4th, 2017

SUMMARY: Tony Tether attended the 5th Reagan National Defense Forum (RNDF) at the Ronald Reagan Presidential Library in Simi Valley, California in his position as a Director of the SSA Board of Global Foundries. In this article, he hit on what he believes were the main points from the panels he attended.

 


Fulfilling Koch’s postulates in glycoscience: HCELL, GPS and translational glycobiology

AUTHOR(S): Robert Sackstein

ABSTRACT:

Glycoscience-based research that is performed expressly to address medical necessity and improve patient outcomes is called “translational glycobiology”. In the 19th century, Robert Koch proposed a set of postulates to rigorously establish causality in microbial pathogenesis, and these postulates can be reshaped to guide knowledge into how naturally-expressed glycoconjugates direct molecular processes critical to human well-being. Studies in the 1990s indicated that E-selectin, an endothelial lectin that binds sialofucosylated carbohydrate determinants, is constitutively expressed on marrow microvessels, and investigations in my laboratory indicated that human hematopoietic stem cells (HSCs) uniquely express high levels of a specialized glycoform of CD44 called “hematopoietic cell E-/L-selectin ligand” (HCELL) that functions as a highly potent E-selectin ligand. To assess the role of HCELL in directing HSC migration to marrow, a method called “glycosyltransferase-programmed stereosubstitution” (GPS) was developed to custom-modify CD44 glycans to enforce HCELL expression on viable cell surfaces. Human mesenchymal stem cells (MSCs) are devoid of E-selectin ligands, but GPS-based glycoengineering of CD44 on MSCs licenses homing of these cells to marrow in vivo, providing direct evidence that HCELL serves as a “bone marrow homing receptor”. This review will discuss the molecular basis of cell migration in historical context, will describe the discovery of HCELL and its function as the bone marrow homing receptor, and will inform on how glycoengineering of CD44 serves as a model for adapting Koch’s postulates to elucidate the key roles that glycoconjugates play in human biology and for realizing the immense impact of translational glycobiology in clinical medicine.

 


T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy

AUTHOR(S): Robert Sackstein, Tobias Schatton, Steven R. Barthel

ABSTRACT:

Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell ‘homing deficit’ may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging data is shedding light into the diverse mechanisms of immune escape by which tumors restrict Teff cell trafficking and lesional penetrance. In this review, we scrutinize evolving knowledge on the molecular determinants of Teff cell navigation into tumors. By integrating recently described, though sporadic information of pivotal adhesive and chemokine homing signatures within the tumor microenvironment with better established paradigms of T-cell trafficking under homeostatic or infectious disease scenarios, we seek to refine currently incomplete models of Teff cell entry into tumor tissue. We further summarize how cancers thwart homing to escape immune-mediated destruction and raise awareness of the potential impact of immune checkpoint blockers on Teff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting Teff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.

 


Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells

AUTHOR(S): Brad Dykstra, Jungmin Lee, Luke J. Mortensen, Haixiao Yu, Zhengliang L. Wu, Charles P. Lin, Derrick J. Rossi, Robert Sackstein

ABSTRACT:

Human mesenchymal stem cells (MSCs) hold great promise in cellular therapeutics for skeletal diseases but lack expression of E-selectin ligands that direct homing of blood-borne cells to bone marrow. Previously, we described a method to engineer E-selectin ligands on the MSC surface by exofucosylating cells with fucosyltransferase VI (FTVI) and its donor sugar, GDP-Fucose, enforcing transient surface expression of the potent E-selectin ligand HCELL with resultant enhanced osteotropism of intravenously administered cells. Here, we sought to determine whether E-selectin ligands created via FTVI-exofucosylation are distinct in identity and function to those created by FTVI expressed intracellularly. To this end, we introduced synthetic modified mRNA encoding FTVI (FUT6-modRNA) into human MSCs. FTVI exofucosylation (i.e., extracellular fucosylation) and FUT6-modRNA transfection (i.e., intracellular fucosylation) produced similar peak increases in cell surface E-selectin ligand levels, and shear-based functional assays showed comparable increases in tethering/rolling on human endothelial cells expressing E-selectin. However, biochemical analyses revealed that intracellular fucosylation induced expression of both intracellular and cell surface E-selectin ligands and also induced a more sustained expression of E-selectin ligands compared to extracellular fucosylation. Notably, live imaging studies to assess homing of human MSC to mouse calvarium revealed more osteotropism following intravenous administration of intracellularly-fucosylated cells compared to extracellularly-fucosylated cells. This study represents the first direct analysis of E-selectin ligand expression programmed on human MSCs by FTVI-mediated intracellular versus extracellular fucosylation. The observed differential biologic effects of FTVI activity in these two contexts may yield new strategies for improving the efficacy of human MSCs in clinical applications.